skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grasso, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Freed, R; Harshaw, R; Genet, Russell M (Ed.)
    We used the Las Cumbres Observatory telescopes to take images of three star systems: WDS 19576+3454, WDS 06043+2327, and WDS 06076+2457, on April 3rd, April 8th, and April 4th, 2024 respectively. We analyzed their astronomical measurements using Afterglow Workbench. For WDS 19576+3454, the position angle was measured to be 265.2° ± 0.12° with an angular separation of 7.38” ± 0.022”. For WDS 06043+2327, the position angle was measured to be 298.5° ± 0.28° with an angular separation of 9.83” ± 0.036”. The new data show that both WDS 19576+3454 and WDS 06043+2327 are consistent with being physical binaries but the parallax distances from the GAIA data suggest the stars in these pairs are too far apart to be gravitationally bound. Thus we conclude these two pairs are likely optical doubles. For WDS 06076+2457, the position angle was measured to be 348.1° ± 0.10° with an angular separation of 7.96” ± 0.023”. The new data we observed, combined with available GAIA data, give evidence that WDS 06076+2457 may be a physical double. 
    more » « less
  2. New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized LiD 6 target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge in the measured x range are extracted. In particular, the accuracy of the d quark results is significantly improved. Published by the American Physical Society2024 
    more » « less
  3. The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV / c π beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function. Published by the American Physical Society2024 
    more » « less
  4. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less
  5. null (Ed.)